Трифонов Е.В.
Антропология:   дух - душа - тело - среда человека,

или  Пневмапсихосоматология человека

Русско-англо-русская энциклопедия, 18-е изд., 2015

π

ψ

σ

Общий предметный алфавитный указатель

Психология Соматология Математика Физика Химия Наука            Общая   лексика
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


ОПЛОДОТВОРЕНИЕ: ПРЕДИМПЛАНТАЦИОННОЕ РАЗВИТИЕ ОПЛОДОТВОРЁННОЙ ЯЙЦЕКЛЕТКИ
   
fertilization: preimplantation development of fertilized ovum ]

      Внезародышевые органы, развивающиеся в процессе эмбриогенеза вне тела зародыша, выполняют многообразные функции, обеспечивающие рост и развитие самого зародыша. Некоторые из этих органов, окружающих зародыш, называют также зародышевыми оболочками. К этим органам относятся амнион, желточный мешок, аллантоис, хорион, плацента (рис. 45). Плацента Плацента (детское место) человека относится к типу дискои- дальных гемохориальных ворсинчатых плацент (см. рис. 47; рис. 48). Это важный временный орган с многообразными функциями (см. с. 101), которые обеспечивают связь плода с материнским организмом. Вместе с тем плацента создает барьер между кровью матери и плода. Плацента состоит из двух частей: зародышевой, или плодной (pars fetalis), и материнской (pars materna). Плодная часть представлена ветвистым хорионом и приросшей к нему изнутри амниотической оболочкой, а материнская — видоизмененной слизистой оболочкой матки, отторгающейся при родах (decidua basalis). Развитие плаценты начинается на 3-й неделе, когда во вторичные ворсины начинают врастать сосуды и образовываться третичные ворсины, и заканчивается к концу 3-го месяца беременности. На 6—8-й неделе вокруг сосудов дифференцируются элементы соединительной ткани. В дифферен- цировке фибробластов и синтезе ими коллагена важную роль играют витамины А и С, без достаточного поступления которых в организм беременной женщины нарушается прочность связи зародыша с материнским организмом и создается угроза самопроизвольного аборта. В основном веществе соединительной ткани хориона содержится значительное количество гиалуроновой и хондроитинсерной кислот, с которыми связана регуляция проницаемости плаценты. При развитии плаценты происходят разрушение слизистой оболочки матки, обусловленное протеолитической активностью хориона, и смена гистиотрофного питания на гематотрофное. Это означает, что ворсины хориона омываются кровью матери, излившейся из разрушенных сосудов эндометрия в лакуны. Однако кровь матери и плода в нормальных условиях никогда не смешивается. Гематохориальный барьер, разделяющий оба кровотока, состоит из эндотелия сосудов плода, окружающей сосуды соединительной ткани, эпителия хориальных ворсин (цитотрофобласт и симпластотрофоб- ласт), а кроме того, из фибриноида, который местами покрывает ворсины снаружи. Зародышевая, или плодная, часть плаценты к концу 3-го месяца представлена ветвящейся хориальной пластинкой, состоящей из волокнистой (коллагеновой) соединительной ткани, покрытой цито- и симпла- стотрофобластом (многоядерная структура, покрывающая редуцирующийся цитотрофобласт). Ветвящиеся ворсины хориона (стволовые, якорные) хорошо развиты лишь со стороны, обращенной к миометрию. Здесь они про- Рис. 48. Плацента гемохориального типа. Динамика развития ворсин хориона. А — строение плаценты (стрелками указана циркуляция крови в сосудах и в одной из лакун, где удалена ворсинка): 1 — эпителий амниона; 2 — хориальная пластинка; 3 — ворсинка; 4 — фибриноид; 5 — желточный мешок; 6 — пупочный канатик; 7 — перегородка плаценты; 8 — лакуна; 9 — спиральная артерия; 10 — базальный слой эндометрия; 11 — миометрий; Б — строение первичной ворсины трофобласта A-я неделя); В — строение вторичной эпителиально-мезенхимальной ворсины хориона B-я неделя); Г _ строение третичной ворсины хориона — эпителиально-мезенхимальной с кровеносными сосудами C-я неделя); Д — строение ворсины хориона C-й месяц); Е — строение ворсин хориона (9-й месяц): 1 — межворсинчатое пространство; 2 — микроворсинки; 3 — симпластотрофобласт; 4 — ядра симпластотрофобласта; 5 — цитотрофобласт; 6 — ядро цитотрофобласта; 7 — базальная мембрана; 8 — межклеточное пространство; 9 — фибробласт; 10 — макрофаги (клетки Кащенко—Гофбауэра); 11 — эндотелиоцит; 12 — просвет кровеносного сосуда; 13 — эритроцит; 14 — базальная мембрана гемокапилляра (по Э. М. Швирсту). Рис. 49. Срез ворсины хориона 17-суточного зародыша человека («Крым»). Микрофотография. I — симпластотрофобласт; 2 — цито- трофобласт; 3 — мезенхима хориона (по Н.Р.Барсукову). ходят через всю толщу плаценты и своими вершинами погружаются в базальную часть разрушенного эндометрия. Хориальный эпителий, или цитотрофобласт, на ранних стадиях развития представлен однослойным эпителием с овальными ядрами. Эти клетки размножаются ми- тотическим путем. Из них развивается симпластотрофобласт. В сим- пластотрофобласте содержится большое количество различных протеолитических и окислительных ферментов (АТФазы, щелочная и кислая фосфатазы, 5-нуклеотидазы, ДПН-диафоразы, глюкозо-6-фосфатдегид- рогеназы, а-ГФДГ, сукцинатдегидрогеназа — СДГ, цитохромоксидаза — ЦО, моноаминоксидаза — МАО, неспецифические эстеразы, ЛДГ, НАД- и НАДФ-диафоразы и др. — всего около 60), что связано с его ролью в обменных процессах между организмом матери и плода. В цитотрофобласте и в симпласте выявляются пиноцитозные пузырьки, лизосомы и другие органеллы. Начиная со 2-го месяца, хориальный эпителий истончается и постепенно заменяется симпластотрофобластом. В этот период симпластотрофобласт по толщине превосходит цитотрофобласт, на 9—10-й неделе симпласт истончается, а количество ядер в нем увеличивается. На поверхности симпласта, обращенной в лакуны, появляются многочисленные микроворсинки в виде щеточной каемки (см. рис. 48; рис. 49, 50). Между симпластотрофобластом и клеточным трофобластом имеются щелевидные субмикроскопические пространства, доходящие местами до базальной мембраны трофобласта, что создает условия для двустороннего проникновения трофических веществ, гормонов и др. Во второй половине беременности и особенно в конце ее трофобласт сильно истончается и ворсины покрываются фибриноподобной оксифиль- ной массой, являющейся продуктом свертывания плазмы и распада трофобласта («фибриноид Лангханса»). С увеличением срока беременности уменьшается количество макрофагов и коллаген продуцирующих дифференцированных фибробластов, появляются фиброциты. Количество коллагеновых волокон, хотя и нарастает, но до конца беременности в большинстве ворсин остается незначительным. Большая часть стромальных клеток (миофибробластов) характеризуется уве- Рис. 50. Плацентарный барьер на 28-й неделе беременности. Электронная микрофотография, х 45 000 (по У.Ю.Яцожинской). 1 — симпластотрофобласт; 2 — цитатрофобласт; 3 — базальная мембрана трофобласта, 4 — базапьная мембрана эндотелия; 5 — эндотелиоцит; 6 — эритроцит в капилляре. личенным содержанием цитоскелетных сократительных белков (виментин, десмин, актин и миозин). Структурно-функциональной единицей сформированной плаценты является котиледон, образованный стволовой («якорной») ворсиной и ее вторичными и третичными (конечными) разветвлениями. Общее количество котиледонов в плаценте достигает 200. Материнская часть плаценты представлена базальной пластинкой и соединительнотканными септами, отделяющими котиледоны друг от друга, а также лакунами, заполненными материнской кровью. В местах контакта стволовых ворсин с отпадающей оболочкой встречаются также трофо- бластические клетки (периферический трофобласт). Уже на ранних стадиях беременности ворсины хориона разрушают ближайшие к плоду слои основной отпадающей оболочки, и на их месте обра- зуются заполненные материнской кровью лакуны, в которые свободно свисают ворсины хориона. Глубокие неразрушенные части отпадающей оболочки вместе с трофо- бластом образуют базальную пластинку. Базальный слой эндометрия (lamina basalis) — соединительная ткань слизистой оболочки матки, содержащая децидуалъные клетки. Эти крупные, богатые гликогеном клетки соединительной ткани расположены в глубоких слоях слизистой оболочки матки. Они имеют четкие границы, округлые ядра и оксифильную цитоплазму. В течение 2-го месяца беременности децидуаль- ные клетки значительно укрупняются. В их цитоплазме, кроме гликогена, выявляются липиды, глюкоза, витамин С, железо, неспецифические эсте- разы, дегидрогеназа янтарной и молочной кислот. В базальной пластинке, чаще в месте прикрепления ворсин к материнской части плаценты, встречаются скопления клеток периферического цитотрофобласта. Они напоминают децидуальные клетки, но отличаются более интенсивной базофилией цитоплазмы. Аморфная субстанция (фибриноид Рора) находится на поверхности базальной пластинки, обращенной к хориальным ворсинам. Фибриноид играет существенную роль в обеспечении иммунологического гомео- стаза в системе мать — плод. Часть основной отпадающей оболочки, расположенной на границе ветвистого и гладкого хориона, т.е. по краю плацентарного диска, при развитии плаценты не разрушается. Плотно прирастая к хориону, она образует замыкающую пластинку, препятствующую истечению крови из лакун плаценты. Кровь в лакунах непрерывно циркулирует. Она поступает из маточных артерий, входящих сюда из мышечной оболочки матки. Эти артерии идут по плацентарным перегородкам и открываются в лакуны. Материнская кровь оттекает от плаценты по венам, берущим начало от лакун крупными отверстиями. Формирование плаценты заканчивается в конце 3-го месяца беременности. Плацента обеспечивает питание, тканевое дыхание, рост, регуляцию образовавшихся к этому времени зачатков органов плода, а также его защиту. Функции плаценты. Основные функции плаценты: 1) дыхательная, 2) транспорт питательных веществ, воды, электролитов и иммуноглобулинов, 3) выделительная, 4) эндокринная, 5) участие в регуляции сокращения миометрия. Дыхание плода обеспечивается за счет кислорода, присоединенного к гемоглобину материнской крови, который путем диффузии поступает через плаценту в кровь плода, где он соединяется с фетальным гемоглобином (HbF). Связанная с фетальным гемоглобином С02 в крови плода также диффундирует через плаценту, поступает в кровь матери, где соединяется с материнским гемоглобином. Транспорт всех питательных веществ, необходимых для развития плода (глюкоза, аминокислоты, жирные кислоты, нуклеотиды, витамины, минеральные вещества), происходит из крови матери через плаценту в кровь плода, и, наоборот, из крови плода в кровь матери поступают продукты обмена веществ, выводимые из его организма (выделительная функция). Электролиты и вода проходят через плаценту путем диффузии и с помощью пиноцитоза. В транспорте иммуноглобулинов (Ig) участвуют пиноцитозные везикулы симпластотрофобласта. Поступивший в кровь плода Ig пассивно иммунизирует его от возможного действия бактериальных антигенов, которые могут поступать при заболеваниях матери. После рождения материнский Ig разрушается и заменяется вновь синтезируемым Ig в организме ребенка при действии на него бактериальных антигенов. Через плаценту в околоплодные воды проникают Ig класса G и A (IgG, IgA). Эндокринная функция является одной из важных, так как плацента обладает способностью синтезировать и секретировать ряд гормонов, обеспечивающих взаимодействие зародыша и материнского организма на протяжении всей беременности. Местом продукции плацентарных гормонов являются цитотрофобласт и особенно симпластотрофобласт, а также деци- дуальные клетки. Одним из первых плацента синтезирует хорионический гонадо- тропин, концентрация которого быстро нарастает на 2—3-й неделе беременности, достигая максимума на 8—10-й неделе, причем в крови плода она в 10—20 раз выше, чем в крови матери. Гормон стимулирует образование адренокортикотропного гормона (АКТГ) гипофиза, усиливает секрецию кортикостероидов. Большое значение в развитии беременности имеет плацентарный лактоген, который обладает активностью пролактина и лютеотропного гормона гипофиза. Он поддерживает стероидогенез в желтом теле яичника в первые 3 мес беременности, а также принимает участие в метаболизме углеводов и белков. Концентрация его в крови матери прогрессивно нарастает на 3—4-м месяце беременности и в дальнейшем продолжает увеличиваться, достигая максимума к 9-му месяцу. Этот гормон совместно с про- лактином гипофиза матери и плода играет определенную роль в продукции легочного сурфактанта и фетоплацентарной осморегуляции. Высокая концентрация его обнаруживается в околоплодных водах (в 10—100 раз больше, чем в крови матери). В хорионе, а также в децидуальной оболочке синтезируются прогестерон и прегнандиол. Прогестерон (вырабатываемый сначала желтым телом в яичнике, а с 5—6-й недели в плаценте) подавляет сокращения матки, стимулирует ее рост, оказывает иммунодепрессивное действие, подавляя реакцию отторжения плода. Около 3/4 прогестерона в организме матери метаболизируется и трансформируется в эстрогены, а часть выделяется с мочой. Эстрогены (эстрадиол, эстрон, эстриол) вырабатываются в симпла- стотрофобласте ворсин плаценты (хориона) в середине беременности, а к концу беременности их активность усиливается в 10 раз. Они вызывают гиперплазию и гипертрофию матки. Кроме того, в плаценте синтезируются меланоцитостимулирующий и адренокортикотропный гормоны, соматостатин и др. В плаценте содержатся полиамины (спермин, спермидин), влияющие на усиление синтеза РНК в гладких мышечных клетках миометрия, а также на разрушающие их оксидазы. Важную роль играют аминооксидазы (гиста- миназа, моноаминоксидаза), разрушающие биогенные амины — гистамин, серотонин, тирамин. Во время беременности их активность возрастает, что способствует разрушению биогенных аминов и падению концентрации последних в плаценте, миометрии и крови матери. Во время родов гистамин и серотонин являются наряду с катехоламинами (нор- адреналин, адреналин) стимуляторами сократительной деятельности гладких мышечных клеток (ГМК) матки, и к концу беременности их концентрация значительно возрастает в связи с резким падением (в 2 раза) активности аминооксидаз (ги- стаминаза и др.). При слабой родовой деятельности отмечается усиление активности аминооксидаз, например гистаминазы (в 5 раз). Нормальная плацента не является абсолютным барьером для белков. В частности, а-фетопротеин в конце 3-го месяца беременности проникает в небольшом количестве (около 10 %) из плода в кровь матери, но на этот антиген материнский организм не отвечает отторжением, так как во время беременности уменьшается цитотоксичность материнских лимфоцитов. Плацента препятствует прохождению ряда материнских клеток и цитотоксичес- ких антител к плоду. Главную роль в этом играет фибриноид, покрывающий трофобласт при его частичном повреждении. Это предотвращает поступление в межворсинчатое пространство плацентарных и плодовых антигенов, а также ослабляет гуморальную и клеточную «атаку» матери против зародыша. В заключение отметим основные особенности ранних стадий развития зародыша человека: 1) асинхронный тип полного дробления и образование «светлых» и «темных» бластомеров; 2) раннее обособление и формирование внезародышевых органов; 3) раннее образование амниотического пузырька и отсутствие амниотических складок; 4) наличие в стадии гаструля- ции двух механизмов — деламинации и иммиграции, в течение которых происходит также развитие провизорных органов; 5) интерстициальный тип имплантации; 6) сильное развитие амниона, хориона, плаценты и слабое развитие желточного мешка и аллантоиса.

В РАЗРАБОТКЕ      =      UNDER CONSTRUCTION


Афанасьев Имплантация Имплантация (лат. implantatio — врастание, укоренение) — внедрение зародыша в слизистую оболочку матки. Различают две стадии имплантации: адгезию (прилипание), когда зародыш прикрепляется к внутренней поверхности матки, и инвазию (погружение) — внедрение зародыша в ткани слизистой оболочки матки. На 7-е сутки в трофобласте и эмбриобласте происходят изменения, связанные с подготовкой к имплантации. Бластоциста сохраняет оболочку оплодотворения. В трофобласте увеличивается количество лизосом с ферментами, обеспечивающими разрушение (лизис) тканей матки и тем самым способствующими внедрению зародыша в толщу слизистой оболочки матки. Появляющиеся в трофобласте микроворсинки постепенно разрушают оболочку оплодотворения. Зародышевый узелок уплощается и превращается в зародышевый щиток, в котором начинается подготовка к первой стадии гаструляции. Имплантация продолжается около 40 ч (см. рис. 37; рис. 38). Одновременно с имплантацией происходит и начало гаструляции (образование зародышевых листков). Это первый критический период развития. В первой стадии трофобласт прикрепляется к слизистой оболочке матки и в нем начинают дифференцироваться два слоя — цитотрофобласт и симпластотрофобласт, или тазмодиотрофобласт. Во второй фазе симпла- стотрофобласт, продуцируя протеолитические ферменты, разрушает слизистую оболочку матки. Формирующиеся при этом ворсинки трофобласта, внедряясь в матку женщины, последовательно разрушают ее эпителий, затем подлежащую соединительную ткань и стенки сосудов, и трофобласт вступает в непосредственный контакт с кровью материнских сосудов. Образуется имплантационная ямка, в которой вокруг зародыша появляются участки кровоизлияний. Трофобласт вначале (первые 2 нед) потребляет продукты распада материнских тканей (гистиотрофный тип питания), затем питание зародыша осуществляется непосредственно из материнской крови (гематотрофный тип питания). Из крови матери зародыш получает не только все питательные вещества, но и кислород, необходимый для дыхания: Одновременно в слизистой оболочке матки усиливается образование из клеток соединительной ткани, богатых гликогеном, децидуальных клеток. После полного погружения зародыша в имплантационную ямку отверстие, образовавшееся в слизистой оболочке матки, заполняется кровью и продуктами разрушения ткани слизистой оболочки матки. В последующем дефект слизистой оболочки покрывается регенерирующим эпителием. Гематотрофный тип питания, сменяющий гистиотрофный, сопровождается переходом к качественно новому этапу эмбриогенеза — второй фазе гаструляции и закладке внезародышевых органов.

В РАЗРАБОТКЕ      =      UNDER CONSTRUCTION


sysro14_1.jpg
     Все клетки организма подразделяют на соматические и половые. После наступления полового созревания развитие мужских половых клеток - сперматозоидов (сперматогенез) совершается в мужских половых железах - яичках, развитие женских половых клеток - яйцеклеток (овогенез, оогенез) происходит в яичниках - женских половых железах. Зрелые половые клетки - гаметы (сперматозоид и яйцеклетка) способны объединяться и давать начало новому организму.
     Клетки зачаткового эпителия в мужских и женских половых железах (гонадах) претерпевают ряд последовательных митотических и мейотических делений. В результате этого образуются зрелые мужские гаметы (сперматогенез) и женские гаметы (овогенез). В обоих случаях процесс делится на три (или четыре) фазы - фазу размножения, фазу роста и фазу созревания. Фаза размножения включает многократные митотические деления, приводящие к образованию множества сперматогоний или оогоний. Каждая из них проходит период роста в порядке подготовки к первому делению мейоза и последующему цитокинезу. Затем начинается фаза созревания, во время которой происходят первое и второе деления мейоза с последующей дифференцировкой гаплоидных (с одинарным набором хромосом) клеток и формированием зрелых гамет.

Таблица.  Морфогенетические процессы в различные стадии внутриутробного (преднатального) развития человека.
Модификация: Афанасьев Ю.И., Юрина Н.А., Котовский Е.Ф. и др. Гистология, цитология и эмбриология. М., «Медицина», 2003, 737 с., см.: Гистология человека: Литература. Иллюстрации.

Сроки развития, недели Морфогенетические процессы
I. Стадия предэмбрионального развития
1 1-я

Оплодотворение. Дробление зиготы. Образование морулы и бластулы. Первая стадия гаструляции (деламинация), образование эпибласта и гипобласта. Начало имплантации


II. Стадия эмбрионального развития
2 2-я

Завершение имплантации. Формирование зародышевого диска. Вторая стадия гаструляции (иммиграция), образование первичной полоски, предхорддальной пластинки.
Образование амниотического и зародышевого пузырьков, внезародышевой мезодермы. Дифференцировка трофобласта на цитотрофобласт и симпластотрофобласт, первичных ворсин хориона. Развитие первичного и вторичного (дефинитивного) желточного мешка.


3 3-я

Продолжение 2-й стадии гаструляции, образование трех зародышевых листков, хорды, предхорддальной пластинки, нервной трубки, нервного гребня. Начало сегментации дорзальной мезодермы (сомиты, сегментные ножки), образование париетального и висцерального листков спланхнотомов и эмбрионального целома, который далее разделяется на 3 полости тела - перикардиальную, плевральную, перитонеальную. Закладка сердца, кровеносных сосудов, предпочки - пронефроса.
Формирование внезародышевых органов - аллантоиса, вторичных и третичных ворсин хориона. Образование туловищной складки и отделение первичной кишки, зародыша от вторичного желточного мешка.


4 4-я

Углубление желточной складки, образование желточного стебля и приподнятие зародыша в полости амниона. Продолжение сегментации дорсальной мезодермы до 30 сомитов и дифференцировка на миотом, склеротом и дерматом. Замыкание нервной трубки и формирование переднего невропора (к 25 сут) и заднего невропора (к 27 сут), образование нервных ганглиев; закладка лёгкого, желудка, печени, поджелудочной железы, эндокринных желёз (аденогипофиза, щитовидной и околощитовидных желёз). Образование ушной и хрусталиковой плакод, первичной почки - мезонефроса. Начало формирования плаценты.
Образование зачатков верхних и нижних конечностей, 4-х пар жаберных дуг.

5 5-я

Расширение головного конца нервной трубки. Окончание сегментации мезодермы (образование 42-44 пар сомитов), образование несегментированной мезодермы (нефрогенная ткань) в каудальном отделе. Развитие бронхов и долей лёгкого. Закладка окончательной почки (метанефрос), урогенитального синуса, прямой кишки, мочевого пузыря. Образование половых валиков.


6 6-я

Формирование лица, пальцев рук. Начало образования наружного уха и глазного яблока. Образование зачатков отделов головного мозга - моста, мозжечка. Формирование печени, поджелудочной железы, легких. Закладки грудных желез. Отделение гонад от мезонефроса, формирование половых различий гонад.


7 7-я

Формирование верхних и нижних конечностей. Разрыв клоакальной мембраны.

8 8-я

Формирование пальцев верхней и нижней конечностей. Значительное увеличение размеров головы (до 1 / 2 длины туловища). Пуповина представляет собой шнур, соединяющий пупок зародыша/плода с плацентой. Пупочные кровеносные сосуды (две артерии и одна вена) обеспечивают гемациркуляцию зародыша/плода и его питание и дыхание.


III. Стадия развития плода
9 9—38-я нед

Завершение формирования плаценты (12 - 13 нед). Образование гладкого и ворсинчатого хориона.
Разрастание симпластотрофобласта и редукция цитотрофобласта в ворсинах плаценты.
Значительное увеличение размеров и массы плода. Продолжение процессов формирования тканей и органов. Формирование системы мать - плод. Кровообращение плода.


!!!!!!Sexual Selection and the Origins of Human Mating Systems (Oxford Biology) By Alan F. Dixson Publisher: Oxford University Press, USA Number Of Pages: 232 Publication Date: 2009-07-15 2_116/Sexual_Selection_and_Origins_Human_Mating_Systems2009.pdf = рисунок sexact1_1.tif

  • Dixson A.F. Sexual Selection and the Origins of Human Mating Systems = Сексуальный отбор и происхождение супружеской системы у человека. Oxford University Press, 2009, 232 p.
    Учебное пособие.  Перевести на русский язык = Translate into Russian.
    Доступ к данному источнику = Access to the reference.
    URL: http://www.tryphonov.ru/tryphonov/serv_r.htm#0          quotation Афанасьев с 100 Оплодотворение и образование зиготы Оплодотворение (fertilisatio) — слияние мужской и женской половых клеток, в результате чего восстанавливается диплоидный набор хромосом, характерный для данного вида животных, и возникает качественно новая клетка — зигота (оплодотворенная яйцеклетка, или одноклеточный зародыш). У человека объём эякулята — извергнутой спермы — в норме составляет около 3 мл. Для обеспечения оплодотворения общее количество сперматозоидов в сперме должно быть не менее 150 млн, а концентрация их в 1 мл — 20—200 млн1, хотя в яйцеклетку проникает только один из них, а остальные подготавливают условия для оплодотворения. В половых путях женщины после копуляции их число уменьшается по направлению от влагалища к дистальному концу маточной трубы. В процессе оплодотворения различают три фазы: 1) дистантное взаимодействие и сближение гамет; 2) контактное взаимодействие и активизация яйцеклетки; 3) вхождение сперматозоида в яйцо и последующее слияние — сингамия. Первая фаза — дистантное взаимодействие — обеспечивается хемотаксисом — совокупностью специфических факторов, повышающих вероятность столкновения половых клеток. Важную роль в этом играют гамоны — химические вещества, вырабатываемые половыми клетками (рис. 32). Установлено, что яйцеклетки выделяют пептиды, способствующие привлечению сперматозоидов. Сразу после эякуляции спермин неспособны к проникновению в яйцеклетки до тех пор, пока не произойдет капацитация — приобретение спермиями оплодотворяющей способности под действием секрета женских половых путей, которое длится 7 ч. В процессе капацитации с плазмолеммы спермия в области акросомы удаляются гликопротеины и протеины семенной плазмы, что способствует акросомальной реакции. В механизме капацитации большое значение принадлежит гормональным факторам, прежде всего прогестерону (гормон желтого тела), активизирующему секрецию железистых клеток яйцеводов. Во время капацитации происходят связывание холестерина цитолеммы спермия альбуминами женских половых путей и обнажение рецепторов половых клеток. Оплодотворение происходит в ампулярной части яйцевода. Оплодотворению предшествует осеменение — взаимодействие и сближение гамет (дистантное взаимодействие), обусловленное хемотаксисом. Вторая фаза оплодотворения — контактное взаимодействие, во время которого сперматозоиды вращают яйцеклетку. Многочисленные спермин приближаются к яйцеклетке и вступают в контакт с ее оболочкой. Яйцеклетка начинает совершать вращательные движения вокруг своей оси со скоростью 4 вращения в минуту. Эти движения обусловлены влиянием биения жгутиков сперматозоидов и продолжаются около 12 ч. В процессе взаимодействия мужской и женской половых клеток в спермиях происходит акросомальная р е а к ц и я. Она заключается в слиянии наружной мембраны акросомы с передними 2/3 плазмолеммы спермия. Затем Рис. 32. Дистантное и контактное взаимодействие спермиев и яйцеклетки. 1 — сперматозоид и его рецепторы на головке; 2 — отделение углеводов с поверхности го- ловки при капацитацин; 3 — связывание рецепторов сперматозоида с NAP-рецепта рам и яйцеклетки (N - ацети л - гл ю коза мин- рецептор, заключенный в Zp3); 4 — Zp3 (третья фракция блестящей зоны)! 5 — цитолемма яйцеклетки; ГП, ГГП — гиногамоны; АП, АГЛ — андро- гамоны. в области слияния мембраны разрываются и ферменты акросомы выходят в окружающую среду. Инициация второй фазы оплодотворения происходит под влиянием сульфати- рованных полисахаридов блестящей зоны, которые вызывают поступление ионов кальция и натрия в головку спермия, замещение ими ионов калия и водорода и разрыв мембраны акросомы. Прикрепление спермия к яйцеклетке происходит под влиянием углеводной группы фракции гл и коп роте и нов прозрачной зоны яйцеклетки. Рецепторы спермия для прозрачной зоны представляют собой фермент глико- зилтрансферазу, находящийся на поверхности акросомы головки, который «узнает* сахар N-ацети л глюкозам и н — рецептор женской половой клетки. Плазматические мембраны в месте контакта половых клеток сливаются и происходит плазмогамия — объединение цитоплазм обеих гамет. Сперматозоиды при контакте с яйцеклеткой могут связывать десятки тысяч молекул гликопротеида Zp3. При этом отмечается запуск акросомаль- ной реакции. Акросомальная реакция характеризуется повышением проницаемости плазмолеммы спермия к ионам Сан, деполяризацией ее, что способствует слиянию плазмолеммы с передней мембраной акросомы. Блестящая зона оказывается в непосредственном контакте с акросомальными ферментами. Ферменты разрушают блестящую зону, спермий проходит через нее и входит в перивителлиновое пространство, расположенное между блестящей зоной и плазмолеммой яйцеклетки. Через несколько секунд изменяются свойства плазмолеммы яйцеклетки и начинается кортикальная реакция, а через несколько минут изменяются свойства блестящей зоны — Zp (зонная реакция). Рис. 33. Оплодотворение (по Вассерману с изменениями). 1, 2, 3, 4 — стадии акросомной реакции; 5 — zonn pellucida (блестящая зона); 6 — перивител- л и новое пространство: 7 — плазматическая мембрана; 8 — кортикальная гранула; 8а -¦ кортикальная реакция; 9 — вхождение спермия в яйцеклетку; 10 — зонная реакция. У млекопитающих при оплодотворении в яйцеклетку проникает лишь один сперматозоид. Такое явление называется моноспермие й. Оплодотворению способствуют сотни других принимающих участие в осеменении сперматозоидов. Ферменты, выделяемые из акросом, — спермолизины (трипсин, гиалуронидаза) разрушают лучистый венец, расщепляют глико- заминогликаны прозрачной зоны яйцеклетки. Отделяющиеся фолликулярные клетки склеиваются в конгломерат, который вслед за яйцеклеткой перемещается по трубе благодаря мерцанию ресничек эпителиальных клеток слизистой оболочки. Третья фаза. В ооплазму проникают головка и промежуточная часть хвостового отдела. После вхождения сперматозоида в яйцеклетку на периферии ооплазмы происходит уплотнение ее (зонная реакция) и образуется оболочка оплодотворения. Кортикальная реакция — слияние плазмолеммы яйцеклетки с мембранами кортикальных гранул, в результате чего содержимое из гранул выходит в пери вителл и новое пространство и воздействует на молекулы гли- копротеидов блестящей зоны (рис. 33). Вследствие этой зонной реакции мо- Рнс. 34. Фазы оплодотворения и начало дробления (схема). 1 — ооплазма; la — кортикальные гранулы; 2 — ядро; 3 — блестящая зона; 4 — фолликулярный эпителий; 5 — спермин; 6 — редукционные тельца; 7 — митотическое деление ооиита; 8 — бугорок оплодотворения; 9 — оболочка оплодотворения; 10 — женский пронуклеус; 11 — мужской пронуклеус; 12 — синкарион; 13 — первое митотическое деление зиготы; 14 — бла- стомеры. лекулы Zp3 модифицируются и утрачивают способность быть рецепторами спермиев. Образуется оболочка оплодотворения толщиной 50 нм, препятствующая полиспермии — проникновению других спермиев. Механизм кортикальной реакции включает приток ионов натрия через участок мембраны сперматозоида, встроенный в поверхность яйцеклетки после завершения акросомальной реакции. В результате отрицательный мембранный потенциал клетки становится слабоположительным. Приток ионов натрия обусловливает высвобождение ионов кальция из внутриклеточных депо и увеличение его содержания в гиалоплазме яйцеклетки. Вслед за этим начинается экзоцитоз кортикальных гранул. Высвобождающиеся из них про- теолитические ферменты разрывают связи между блестящей зоной и плаз- молеммой яйцеклетки, а также между спермиями и прозрачной зоной. Кроме того, выделяется гликопротеид, связывающий воду и привлекающий ее в пространство между плазмолеммой и блестящей зоной. Вследствие этого формируется перивитеминоеое пространство. Наконец, выделяется фактор, способствующий затвердению прозрачной зоны и образованию из нее оболочки оплодотворения. Рис. 35. Яйцеклетка и зигота человека (по Б.П.Хватову). А — яйцеклетка человека после овуляции: 1 — цитоплазма; 2 — ядро; 3 — блестящая зона; 4 — фолликулярные клетки, образующие лучистый венец. Б — зигоТа человека в стадии сближения мужского и женского ядер (пронуклеусов): I — женское ядро; 2 — мужское ядро. Благодаря механизмам предотвращения полиспермии только одно гаплоидное ядро сперматозоида получает возможность слиться с одним гаплоидным ядром яйцеклетки, что приводит к восстановлению характерного для всех клеток диплоидного набора. Проникновение сперматозоида в яйцеклетку через несколько минут значительно усиливает процессы внутриклеточного обмена, что связано с активизацией ферментативных ее систем. Взаимодействие сперматозоидов с яйцеклеткой может быть заблокировано при помощи антител против веществ, входящих в прозрачную зону. На этом основании изыскиваются способы иммунологической контрацепции. После сближения женского и мужского пронуклеусов, которое продолжается у млекопитающих около 12 ч, образуется зигота — одноклеточный зародыш (рис. 34, 35, А, Б). Уже на стадии зиготы выявляются презумптив- ные зоны (лат. presumptio — вероятность, предположение) как источники развития соответствующих участков бластулы, из которых в дальнейшем формируются зародышевые листки1. Дробление и образование бластулы Дробление (fissio) — последовательное митотическое деление зиготы на клетки (бластомеры) без роста дочерних клеток до размеров материнской. Образующиеся бластомеры остаются объединенными в единый организм зародыша. В зиготе образуется митотическое веретено между отдаляющимися к полюсам центриолями, внесенными сперматозоидом. Пронуклеусы вступают в стадию профазы с формированием объединенного диплоидного набора Метод выявления презумптивных зон предложен немецким эмбриологом Фогтом. Рис. 36. Зародыш человека на ранних стадиях развития (по Гертигу и Рокку). А — стадия двух бластомеров; Б — бластоциста: [ — эмбриобласт; 2 — чрофобласт; 3 — полость бласто цисты. хромосом яйцеклетки и сперматозоида. Пройдя все остальные фазы митоти- ческого деления, зигота разделяется на две дочерние клетки — бластомеры (от греч. blastos — зачаток, meros — часть). Вследствие фактического отсутствия G,-периода, во время которого происходит рост клеток, образовавшихся в результате деления, клетки гораздо меньше материнской, поэтому и величина зародыша в целом в этот период независимо от числа составляющих его клеток не превышает величину исходной клетки — зиготы. Все это позволило назвать описываемый процесс дроблением (т. е. измельчением), а клетки, образующиеся в процессе дробления, — бластомерами. Дробление зиготы человека начинается к концу первых суток и характеризуется как полное неравномерное асинхронное. В течение первых суток оно происходит медленно. Первое дробление (деление) зиготы завершается через 30 ч, б результате образуется 2 бластомера, покрытых оболочкой оплодотворения. За стадией двух бластомеров следует стадия трех бластомеров. С первых же дроблений зиготы формируются два вида бластомеров — «темные» и «светлые». «Светлые», более мелкие, бластомеры дробятся быстрее и располагаются одним слоем вокруг крупных «темных», которые оказываются в середине зародыша. Из поверхностных «светлых» бластомеров в дальнейшем возникает трофобласт, связывающий иродыш с материнским организмом и обеспечивающий его питание. Внутренние, «темные», бластомеры формируют эмбриобласт, из которого образуются тело зародыша и некоторые внеэародышевые органы (амнион, желточный мешок, аллан- тоис). Начиная с трех суток, дробление идет быстрее, и на 4-е сутки зародыш состоит из 7—12 бластомеров. Уже через 50—60 ч образуется плотное скопление клеток — морула, а на 3—4-е сутки начинается формирование бластоцисты — полого пузырька, заполненного жидкостью (рис. 36, 37). Бластоциста в течение 3 сут перемещается по яйцеводу к матке и через 4 сут попадает в матку. Бластоциста находится в полости матки в свободном 105 Рис. 37. Дробление, гаструляция и имплантация зародыша человека (схема). I — дробление; 2 — морула; 3 — бластоциста; 4 — полость бластоцисты; 5 — эмбриобласт; 6 — трофобласт; 7 — зародышевый узелок: а — эпибласт, б — гипобласт; 8 — оболочка оплодотворения; 9 — имниотический (эктодермольный) пузырек; 10 — внеэародышевая мезодерма; II — эктодерма; 12 — энтодерма; 13 — цитотрофобласт; 14 — симпластотрофобласт; 15 — зародышевый диск; 16 — лакуны с материнской кровью; 17 — хорион; 18 — амниоти- ческая ножка; 19 — желточный пузырек; 20 — слизистая оболочка матки; 21 — яйцевод. виде в течение 2 дней E-е и 6-е сутки), и эта стадия обозначается как свободная бластоциста. К этому времени бластоциста увеличивается благодаря росту числа бластомеров — клеток эмбриобласта и трофобласта — до 100 и более вследствие усиленного всасывания трофобластом секрета маточных желез, а также вследствие активной выработки жидкости самим трофобластом (см. рис. 37). Эмбриэбласт располагается в виде узелка зародышевых клеток («зародышевый узелок*), который прикрепляется изнутри к трофобласту на одном из полюсов бластоцисты и начинается имплантация. Имплантация Имплантация (лат. implantatio — врастание, укоренение) — внедрение зародыша в слизистую оболочку матки. Различают две стадии имплантации: адгезию (прилипание), когда зародыш прикрепляется к внутренней поверхности матки, и инвазию 106

    Схема. Оплодотворение овоцита - 1.
    Модификация: Moore K.L., Persaud T.V.N. The Developing Human: Clinically Oriented Embryology. Saunders, 2007, 536 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

         Последовательность процессов, лежащих в основе оплодотворения, начинается с момента времени, когда сперматозоиды начинают взаимодействовать с плазматической мембраной вторичного овоцита. Эта последовательность завершается процессом перемешивания материнских и отцовских хромосом в метафазе первого митотического деления зиготы.
         А. Вторичный овоцит, окружённый несколькими сперматозоидами, два из них уже вклинились в лучистый венец овоцита. (Показаны только четыре из двадцати трёх пар хромосом).
         Б. Лучистая корона разрушается и исчезает, сперматозоид проникает в овоцит, происходит второе мейотическое деление и формируется зрелый овоцит. Нуклеус овоцита преобразуется в женский пронуклеус.
         В. Головка сперматозоида, проникнувшего в овоцит, увеличивается для того, чтобы образовался мужской пронуклеус. В результате клетка (овотид), содержит мужской и женский пронуклеусы.
         Г. Мужской и женский пронуклеусы сливаются.
         Д. Формируется зигота, которая содержит диплоидное количество (46) хромосом.

    Схема. Оплодотворение овоцита - 2.
    Модификация: Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular Biology of the Cell, Garland Science, 2002, 2392 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

         Микрография (сканирующий электронный микроскоп) яйцеклетки, поверхность которой опутана многими сперматозоидами. В то время как яйцеклетка неподвижна, сперматозоиды очень подвижны. Хотя к яйцеклетке прикрепляется множество сперматозоидов, только один из них оплодотворит яйцеклетку.

    Схема. Оплодотворение овоцита - 3.
    Модификация: Moore K.L., Persaud T.V.N. The Developing Human: Clinically Oriented Embryology. Saunders, 2007, 536 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

    А, БСперматозоид, проникающий в овоцит и реакция акросомы. 1. Сперматозоид во время капацитации (capacitation) в половых путях женщины. Капацитация - процесс структурно-функциональной модификации сперматозоида, в результате которого он становится способным к оплодотворению яйцеклетки. 2. Акросомальная реакция сперматозоида - процесс перфорации наружной оболочки акросомы и мембраны акросомы в результате которого высвобождаются ферменты, катализирующие разрушение клеточных слоёв, окружающих овоцит. 3. Высвободившимися акросомальными ферментами сперматозоид разрушает клеточные слои, окружающих овоцит, и прокладывает путь через прозрачную зону овоцита. 4. Сперматозоид проникает в цитоплазму овоцита. Заметим, что плазматические мембраны овоцита и сперматозоида сливаются так, что головка и хвост сперматозоида входят в овоцит, а плазматическая мембрана сперматозоида остается прикреплённой к плазматической мембране овоцита. В. Микрография (сканирующий электронный микроскоп) неоплодотворенного овоцита. Несколько сперматозоидов прикреплены к прозрачной зоне овоцита. Г. Микрография (сканирующий электронный микроскоп) овоцита. Сперматозоид (белая стрелка), проникающий в прозрачную зону овоцита.

    Схема. Последовательные ступени оплодотворения.
    Модификация: Faller A., Schuenke M., Eds. The Human Body. Thieme, 2004, 710 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

         При контактном взаимодействии мужской и женской половых клеток сперматозоид прикрепляется к прозрачной зоне овоцита. Вслед за этим в сперматозоиде происходит акросомальная реакция. Она начинается слиянием передней части наружной оболочки акросомы головки сперматозоида с её плазмалеммой. Наружная оболочка (на схеме - зелёный цвет) и плазмалемма акросомы разрываются. Богатые ферментами органеллы головки сперматозоида сливаются во многих точках с её плазмалеммой головки. В точках слияния образуются везикулы. Везикулы отшнуровываются (везикуляция) от головки сперматозоида и выделяют ферменты находившиеся в акросоме (гиалуронидаза и протеаза). Эти ферменты «переваривают» клеточные слои окружающие овоцит, в том числе и его прозрачную зону и облегчают продвижение сперматозоида к овоциту. В конце концов сперматозоид соприкасается с овоцитом. Их плазмалеммы сливаются. Сперматозоид входит в овоцит целиком. Происходит объединение цитоплазм обеих гамет (плазмогамия). При этом запускается кортикально-зональная реакция. В месте вхождения сперматозоида в овоцит, расположенные под его плазматической мембраной богатые ферментами кортикальные гранулы цитоплазмы овоцита выделяют своё содержимое (жёлтый цвет) в прозрачную зону. Вещества гранул распространяются от точки сплавления к периферии по всей поверхности овоцита. Это кортикальная реакция, вслед за которой наступает зональная реакция. Она заключается в том, что ферменты модифицируют прозрачную зону. Прозрачная зона утолщается и отделяется от плазматической мембраны овоцита. Зональная реакция охватывает всю поверхность клетки. В результате этого прозрачная зона образует непроницаемую преграду - оболочку оплодотворения. Эта оболочка препятствует проникновению в овоцит других сперматозоидов, то есть препятствует явлению полиспермии.

    Схема. Развитие зиготы.
    Модификация: Faller A., Schuenke M., Eds. The Human Body. Thieme, 2004, 710 p., см.: Физиология человека: Литература. Иллюстрации.

    Схема. Оплодотворение и имплантация.
    Модификация: Young B., Lowe J.S., Stevens A.,, Heath J.W., Eds. Wheater's Functional Histology: A Text and Colour Atlas, 5th ed., 2006., см.: Гистология человека: Литература. Иллюстрации.

    Схема. Двенадцатидневная бластоциста человека.
    Модификация: Faller A., Schuenke M., Eds. The Human Body. Thieme, 2004, 710 p., см.: Физиология человека: Литература. Иллюстрации.

    Схема. Первая неделя эмбрионального развития человека.
    Модификация: Faller A., Schuenke M., Eds. The Human Body. Thieme, 2004, 710 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

         1Овоцит непосредственно после овуляции.
         2Оплодотворение в интервале 12-ти часов.
         3Стадия мужского и женского пронуклеуса.
         4. Дробление. Первое митотическое деление зиготы на клетки (бластомеры).
         5. Стадия двух клеток.
         6. Стадия морулы.
         7. Вхождение в полость матки.
         8. Бластоцист.
         9. Стадия ранней имплантации.

    Схема. Образование отпадающей оболочки матки и развитие плаценты.
    Модификация: Young B., Lowe J.S., Stevens A.,, Heath J.W., Eds. Wheater's Functional Histology: A Text and Colour Atlas, 5th ed., 2006., см.: Гистология человека: Литература. Иллюстрации.

    Схема. Раннее (9 - 16 день) развитие плаценты.
    Модификация: Gabbe S.G., Simpson J.L., Niebyl J., Galan H., Goetzl L., Jaunia E.R.M., Eds. Obstetrics: Normal and Problem Pregnancies. Churchill Livingstone, 2007, 1416 p., см.: Физиология человека: Литература. Иллюстрации.

    Схема. Развитие материнских спиральных артерий в начале беременности.
    Модификация: Gabbe S.G., Simpson J.L., Niebyl J., Galan H., Goetzl L., Jaunia E.R.M., Eds. Obstetrics: Normal and Problem Pregnancies. Churchill Livingstone, 2007, 1416 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

    В начале беременности верхушки материнских спиральных артерий закупорены внедрившимися эндоваскулярными клетками трофобласта. В результате этого блокируется поток крови в пространство между ворсинками. Комбинация эндоваскулярного и интерстициального трофобластического внедрения тесно связана с реконструкцией спиральных артерий.

    Схема. Поперечное сечение плаценты.
    Модификация: Gabbe S.G., Simpson J.L., Niebyl J., Galan H., Goetzl L., Jaunia E.R.M., Eds. Obstetrics: Normal and Problem Pregnancies. Churchill Livingstone, 2007, 1416 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

    Хориональная и базальная пластинки с межворсинчатым пространством между ними. Ворсинчатое дерево начинается стволовой ворсиной, отходящей от хориональной пластинки. Ворсинчатые деревья расположены в виде долек, в центре которых находятся материнские спиральные артерии.

    Схема. Котиледон - структурно-функциональная единица плаценты. Межуточное ворсинчатое дерево плаценты.
    Модификация: Gabbe S.G., Simpson J.L., Niebyl J., Galan H., Goetzl L., Jaunia E.R.M., Eds. Obstetrics: Normal and Problem Pregnancies. Churchill Livingstone, 2007, 1416 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

    Структурно-функциональной единицей сформированной плаценты является котиледон, ворсинчатое дерево плаценты. Общее количество котиледонов в плаценте достигает ~200. Ворсинчатое дерево состоит из стволовой («якорной») ворсины и её вторичных и третичных разветвлений, отходящих от боковых поверхностей. Разветвления завершаются терминальными ворсинками.

    Схема. Плацента после родов.
    Модификация: Faller A., Schuenke M., Eds. The Human Body. Thieme, 2004, 710 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

         А. Вид со стороны плода (амниотический эпителий частично удалён).
         Б. Вид с материнской стороны (основная отслаивающаяся оболочка частично удалена). Выпячиваются плацентарные ворсины, отделённые друг от друга плацентарными перегородками.

    Схема. Двухмесячный эмбрион человека.
    Модификация: Faller A., Schuenke M., Eds. The Human Body. Thieme, 2004, 710 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

    Часть плодных оболочек удалена.

    Схема. Матка, плод, плацента, пупочный канатик и плодные оболочки на шестом месяце беременности.
    Модификация: Faller A., Schuenke M., Eds. The Human Body. Thieme, 2004, 710 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

    Поперечное сечение плаценты показано на схеме ниже.

    Схема. Поперечное сечение плаценты.
    Модификация: Faller A., Schuenke M., Eds. The Human Body. Thieme, 2004, 710 p., см.: Физиология человека: Литература. Иллюстрации.

    Примечание:

         А. Поперечное сечение плаценты.
         Б. Поперечное сечение плацентарной (хорионической) ворсины. Хорионические ворсины омываются материнской кровью и содержат кровеносные сосуды плода. Плацентарный барьер (стрелки голубого цвета) представляет собой стенки кровеносных сосудов плода, состоящую из эпителия ворсинок и соединительной ткани ворсинок.

    Схема. Структура ворсины плаценты.
    Модификация: Young B., Lowe J.S., Stevens A.,, Heath J.W., Eds. Wheater's Functional Histology: A Text and Colour Atlas, 5th ed., 2006., см.: Гистология человека: Литература. Иллюстрации.



         
    СИСТЕМА РЕПРОДУКЦИИ: ОГЛАВЛЕНИЕ
         СИСТЕМА РЕПРОДУКЦИИ: ТАБЛИЦЫ (5) И ИЛЛЮСТРАЦИИ (49).
         СИСТЕМА РЕПРОДУКЦИИ: ЛИТЕРАТУРА.

    Google

    В отдельном окне: 

         
    «Я    У Ч Е Н Ы Й    И Л И . . .    Н Е Д О У Ч К А ?»
        Т Е С Т    В А Ш Е Г О    И Н Т Е Л Л Е К Т А

    Предпосылка:
    Эффективность развития любой отрасли знаний определяется степенью соответствия методологии познания - познаваемой сущности.
    Реальность:
    Живые структуры от биохимического и субклеточного уровня, до целого организма являются вероятностными структурами. Функции вероятностных структур являются вероятностными функциями.
    Необходимое условие:
    Эффективное исследование вероятностных структур и функций должно основываться на вероятностной методологии (Трифонов Е.В., 1978,..., ..., 2015, …).
    Критерий: Степень развития морфологии, физиологии, психологии человека и медицины, объём индивидуальных и социальных знаний в этих областях определяется степенью использования вероятностной методологии.
    Актуальные знания: В соответствии с предпосылкой, реальностью, необходимым условием и критерием... ...
    о ц е н и т е   с а м о с т о я т е л ь н о:
    —  с т е п е н ь  р а з в и т и я   с о в р е м е н н о й   н а у к и,
    —  о б ъ е м   В а ш и х   з н а н и й   и
    —  В а ш   и н т е л л е к т !


    Любые реальности, как физические, так и психические, являются по своей сущности вероятностными.  Формулирование этого фундаментального положения – одно из главных достижений науки 20-го века.  Инструментом эффективного познания вероятностных сущностей и явлений служит вероятностная методология (Трифонов Е.В., 1978,..., ..., 2014, …).  Использование вероятностной методологии позволило открыть и сформулировать важнейший для психофизиологии принцип: генеральной стратегией управления всеми психофизическими структурами и функциями является прогнозирование (Трифонов Е.В., 1978,..., ..., 2012, …).  Непризнание этих фактов по незнанию – заблуждение и признак научной некомпетентности.  Сознательное отвержение или замалчивание этих фактов – признак недобросовестности и откровенная ложь.


         ♥  Ошибка?  Щелкни здесь и исправь ее!                                 Поиск на сайте                              E-mail автора (author): tryphonov@yandex.ru

  • π

    ψ

    σ

    Санкт-Петербург, Россия, 1996-2015

    Copyright © 1996-, Трифонов Е.В.

    Разрешается некоммерческое цитирование материалов данной энциклопедии при условии
    полного указания источника заимствования: имени автора, названия и WEB-адреcа данной энциклопедии


     
    Всего посетителей = Altogether Visitors :  
    Посетителей раздела «Соматология» = Visitors of section «Somatlogy» :