Трифонов Е.В.
Антропология:   дух - душа - тело - среда человека,

или  Пневмапсихосоматология человека

Русско-англо-русская энциклопедия, 18-е изд., 2015

π

ψ

σ

Общий предметный алфавитный указатель

Психология Соматология Математика Физика Химия Наука            Общая   лексика
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


КИСЛОТНО-ОСНОВНЫЕ БУФЕРНЫЕ СИСТЕМЫ КРОВИ
acid-base buffer systems of the blood ]

     (Англ.: buff - поглощать удар, амортизировать толчок, 1835).
     Главными
кислотно-основными буферными системами крови являются: бикарбонатная буферная система, гемоглобиновая буферная система крови, белковая буферная система плазмы крови и фосфатная буферная система.

     1. Бикарбонатная буферная система:     NaHCO3 / H2CO3   или   KHCO3 (Соль) / H2CO3 (Кислота)
     2. Гемоглобиновая буферная система крови:     (K-Hb) / Hb   и   K-Hb02 (Соль) / HbO2 (Кислота)
     3. Буферная система белков плазмы крови:     Протеинат Na / Белки (слабые кислоты)   и   (K-Hb02) / HbO2
     4. Фосфатная буферная система:     Na2HPO4 (основной фосфат) / NaH2PO4 (кислый фосфат)

     Большинство веществ обладают свойствами как кислоты, так и основания (щёлочи). Каждый водный раствор веществ обладает взаимосвязанными свойствами как кислотности, так и щёлочности. Разделение этих веществ на кислоты и щелочи основано на преобладании у данного вещества свойств кислотности или щелочности.

Таблица. Главные кислотно-основные буферные системы экстрацеллюлярной жидкости, концентрации их анионов и их буферные ёмкости.

Буферная система Суммарная концентрация анионов, ммоль, ¤ Буферная ёмкость, (ммоль / л) / pH 

     Бикарбонатная буферная система

24 (67%) 50 (82%) ¤

     Некарбонатные буферные системы:

12 (33%) 11 (18%)

     гемоглобиновая буферная система крови

7 9

 –  буферная система белков плазмы крови

4 2

 –  фосфатная буферная система

1 0,4
Итого 36 (100%) 61 (100%)

Примечание:

     ¤ – средние значения,      ¤ – при неизменном уровне  PaCO2 

     Кислотно-основная буферная система, или кислотно-основная буферная смесь - это основная составляющая часть буферного раствора. Она представляет собой совокупность сопряженных веществ, обеспечивающая устойчивость кислотно-щёлочного равновесия раствора при внешних воздействиях, способных изменить его кислотность (щёлочность). Внешними воздействиями могут быть концентрирование раствора, его разбавление, введение в раствор относительно небольших количеств кислот или оснований.
     При воздействиях на раствор, ведущих либо к возрастанию в нем концентрации водородных ионов,  H+,  либо к возрастанию концентрации гидроксильных ионов,  OH,  одни вещества буферной системы могут связывать водородные ионы, а другие вещества могут связывать гидроксильные ионы. Этим их действием сохраняется устойчивое кислотно-щелочное равновесие. В то же время вещества кислотно-основной буферной системы сосуществуют и взаимодействуют в растворе без полной нейтрализации друг друга.
     Реально кислотно-основная буферная система состоит из слабой кислоты  HA и взаимодействующей с ней соли, образованной этой кислотой и сильным основанием, например  NaA,  KA.  Если в результате внешнего воздействия концентрация водородных ионов  [H+] в растворе возрастает по отношению к исходной (уменьшение pH), свободные анионы  [A], источником которых является соль, связывают катионы водорода  H+ и этим стабилизируют уровень и дисперсию кислотно-щелочного равновесия. Если в результате внешнего воздействия концентрация водородных ионов  [H+] в растворе уменьшается (увеличение  pH), кислота буфера является источником катионов водорода, компенсирующим уменьшение концентрации  [H+].
     Возможность буферных растворов сохранять щелочно-кислотное равновесие ограничена и является характеристикой важной для практики. Эта характеристика может быть оценена косвенно по интенсивности воздействия на раствор. Интенсивность воздействия определяется как количество эквивалентов сильной кислоты или основания, которые необходимо добавить к 1 л буферного раствора, чтобы изменить его pH на единицу. Этот показатель возможности буферных растворов сохранять щелочно-кислотное равновесие называют буферной ёмкостью раствора.
     Возможности буферной системы приближенно характеризует уравнение Гендерсона-Гассельбаха (1908). Henderson, Lawrence Joseph, 1848-1942, биохимик, США. Hasselbalch («Hasselbach»), Karl Albert, 1874-1962, биохимик, Дания.
     Управление устойчивостью кислотно-щелочного равновесия жидкостей организма представляет собой иерархию взаимно соподчиненных вероятностных процессов. Описанные выше механизмы непосредственного регулирования устойчивости кислотно-щелочного равновесия жидкостей организма посредством простых химических буферных систем являются первой, низшей ступенью этой иерархии. Эти исполнительные элементы регуляторов подчинены более совершенным механизмам управления, которые осуществляются с участием системы дыхания, системы выделения и других основных систем организма.

     В соответствии с рекомендациями по номенклатуре Международного союза специалистов по теоретической и прикладной химии, International Union of Pure and Applied Chemistry (IUPAC, произносится как [  /ˈjuːpæk/ ] ) предпочтительными являются термины: гидрогенкарбонат (вместо бикарбонат), гидрогенкарбонатный ион (вместо бикарбонатный ион).

     

Google

В отдельном окне: 

     
«Я    У Ч Е Н Ы Й    И Л И . . .    Н Е Д О У Ч К А ?»
    Т Е С Т    В А Ш Е Г О    И Н Т Е Л Л Е К Т А

Предпосылка:
Эффективность развития любой отрасли знаний определяется степенью соответствия методологии познания - познаваемой сущности.
Реальность:
Живые структуры от биохимического и субклеточного уровня, до целого организма являются вероятностными структурами. Функции вероятностных структур являются вероятностными функциями.
Необходимое условие:
Эффективное исследование вероятностных структур и функций должно основываться на вероятностной методологии (Трифонов Е.В., 1978,..., ..., 2015, …).
Критерий: Степень развития морфологии, физиологии, психологии человека и медицины, объём индивидуальных и социальных знаний в этих областях определяется степенью использования вероятностной методологии.
Актуальные знания: В соответствии с предпосылкой, реальностью, необходимым условием и критерием... ...
о ц е н и т е   с а м о с т о я т е л ь н о:
—  с т е п е н ь  р а з в и т и я   с о в р е м е н н о й   н а у к и,
—  о б ъ е м   В а ш и х   з н а н и й   и
—  В а ш   и н т е л л е к т !


Любые реальности, как физические, так и психические, являются по своей сущности вероятностными.  Формулирование этого фундаментального положения – одно из главных достижений науки 20-го века.  Инструментом эффективного познания вероятностных сущностей и явлений служит вероятностная методология (Трифонов Е.В., 1978,..., ..., 2014, …).  Использование вероятностной методологии позволило открыть и сформулировать важнейший для психофизиологии принцип: генеральной стратегией управления всеми психофизическими структурами и функциями является прогнозирование (Трифонов Е.В., 1978,..., ..., 2012, …).  Непризнание этих фактов по незнанию – заблуждение и признак научной некомпетентности.  Сознательное отвержение или замалчивание этих фактов – признак недобросовестности и откровенная ложь.


     ♥  Ошибка?  Щелкни здесь и исправь ее!                                 Поиск на сайте                              E-mail автора (author): tryphonov@yandex.ru

π

ψ

σ

Санкт-Петербург, Россия, 1996-2015

Copyright © 1996-, Трифонов Е.В.

Разрешается некоммерческое цитирование материалов данной энциклопедии при условии
полного указания источника заимствования: имени автора, названия и WEB-адреcа данной энциклопедии


 
Всего посетителей = Altogether Visitors :  
Посетителей раздела «Химия» = Visitors of section «Chemistry» :