Трифонов Е.В.
Антропология:   дух - душа - тело - среда человека,

или  Пневмапсихосоматология человека

Русско-англо-русская энциклопедия, 18-е изд., 2015

π

ψ

σ

Общий предметный алфавитный указатель

Психология Соматология Математика Физика Химия Наука            Общая   лексика
А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


СРЕДНЯЯ АРИФМЕТИЧЕСКАЯ
arithmetic mean ]

     Средняя величина. Среднее значение показателя, при вычислении которого общий объём показателя в совокупности остается неизменным. Среднее слагаемое показателя в выборочной совокупности.
     Средняя арифметическая выборки (выборочная средняя) является одной из оценок математического ожидания генеральной совокупности. Другими оценками математического ожидания могут быть мода и медиана.
     Формула для вычисления простой средней по негруппированным данным: `x = (1/n)·(x1+x2+... xn); `x = (1/n)·еxi; где `x - средняя величина, xi - i -тый элемент выборки, i = 1,2,3,... , n - размер (объём) выборки.
     Подобные вычисления могут быть легко сделаны с помощью статистических программ для персональной ЭВМ. Из многочисленных статистических программ можно рекомендовать хорошо известные программы:
     - Statistica (URL: http://www.statsoftinc.com/textbook/stathome.html) или
     - SPSS (URL: http://www.spssscience.com/spss11).


     Литература.  Иллюстрации.     References.  Illustrations
     Щелкни здесь и получи доступ в библиотеку сайта!     Click here and receive access to the reference library!

  1. Savage S.L. The Flaw of Averages: Why We Underestimate Risk in the Face of Uncertainty = Изъяны средних: почему мы недооцениваем риск перед лицом неопределённости, Wiley, 2009, 416 p. Учебное пособие.
    Доступ к данному источнику = Access to the reference.
    URL: http://www.tryphonov.ru/tryphonov/serv_r.htm#0          quotation

Google

В отдельном окне: 

     
«Я    У Ч Е Н Ы Й    И Л И . . .    Н Е Д О У Ч К А ?»
    Т Е С Т    В А Ш Е Г О    И Н Т Е Л Л Е К Т А

Предпосылка:
Эффективность развития любой отрасли знаний определяется степенью соответствия методологии познания - познаваемой сущности.
Реальность:
Живые структуры от биохимического и субклеточного уровня, до целого организма являются вероятностными структурами. Функции вероятностных структур являются вероятностными функциями.
Необходимое условие:
Эффективное исследование вероятностных структур и функций должно основываться на вероятностной методологии (Трифонов Е.В., 1978,..., ..., 2015, …).
Критерий: Степень развития морфологии, физиологии, психологии человека и медицины, объём индивидуальных и социальных знаний в этих областях определяется степенью использования вероятностной методологии.
Актуальные знания: В соответствии с предпосылкой, реальностью, необходимым условием и критерием... ...
о ц е н и т е   с а м о с т о я т е л ь н о:
—  с т е п е н ь  р а з в и т и я   с о в р е м е н н о й   н а у к и,
—  о б ъ е м   В а ш и х   з н а н и й   и
—  В а ш   и н т е л л е к т !


Любые реальности, как физические, так и психические, являются по своей сущности вероятностными.  Формулирование этого фундаментального положения – одно из главных достижений науки 20-го века.  Инструментом эффективного познания вероятностных сущностей и явлений служит вероятностная методология (Трифонов Е.В., 1978,..., ..., 2014, …).  Использование вероятностной методологии позволило открыть и сформулировать важнейший для психофизиологии принцип: генеральной стратегией управления всеми психофизическими структурами и функциями является прогнозирование (Трифонов Е.В., 1978,..., ..., 2012, …).  Непризнание этих фактов по незнанию – заблуждение и признак научной некомпетентности.  Сознательное отвержение или замалчивание этих фактов – признак недобросовестности и откровенная ложь.


     ♥  Ошибка?  Щелкни здесь и исправь ее!                                 Поиск на сайте                              E-mail автора (author): tryphonov@yandex.ru

π

ψ

σ

Санкт-Петербург, Россия, 1996-2015

Copyright © 1996-, Трифонов Е.В.

Разрешается некоммерческое цитирование материалов данной энциклопедии при условии
полного указания источника заимствования: имени автора, названия и WEB-адреcа данной энциклопедии


 
Всего посетителей = Altogether Visitors :  
Посетителей раздела «Математика» = Visitors of section «Mathematics» :